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Weighting of Fourier Series for Improvement of Efficie_r_lcy of Convergence
in Crystal Analysis: Space Group P1

By V. VaxnDp axDp R. PEPINSKY
X-Ray and Crystal Analysis Laboratory, The Pennsylvania State University, University Park, Pa., U.S.A.

(Received 26 December 1956 and in revised form 7 February 1957)

The efficiency of convergence of Fourier series used in crystal-structure determinations depends
upon the weighting of the structure factors used. The weighting is of particular importance in
early stages of refinement of a structure. A proper formula for weighting has been derived from
Luzzati’s statistical treatment of errors. The weight depends not only on the reciprocal spacing of
the reflection, but also on the degree of refinement of the structure, and on the magnitudes of both
the calculated and the observed structure factors. Determination of the degree of error in structure
coordinates is discussed, and Luzzati’s and Cruickshank’s methods are compared. A modification
of Luzzati’s method is proposed when the error in coordinates is large.

Introduction

The efficiency of convergence of different methods of
structure determination was first studied by Qurashi
& Vand (1953) and by Qurashi (1953, 1955). The
results of these studies indicate that the convergence
greatly depends on the weighting function adopted;
i.e., the structure factors F(hkl) should be multiplied
by a weight W, which may be a function of several
variables, the most important of which is the depen-
dence on d* = 1/d = (2 sin #)/4 and on the magnitude
of |[F|. In the previous work the dependence on |F|

was neglected; and the form W?2%f%2 =d’, with v =
n+2, seemed the most suitable weighting function for
the least-squares refinement of an n-dimensional sum-
mation (z = 1, 2 or 3), where f is the average atomic
scattering factor. However, the form of the weighting
function and the value of » were not unequivocally
determined by the above methods of analysis.

The problem can be approached much more logically
from the point of view of probability theory, and for-
mulae can be derived which are superior to the above
weighting. In fact, the whole approach to refinement
of a structure at the initial stages by least-squares or
by Fourier techniques, when the correct structure is
far from the assumed structure, can be placed on a
rational basis.

Weighting of structure factors in a Fourier
series for space group P1

Let F° be the observed structure factor, F° the cal-
culated structure factor using coordinate vectors r,,
and F4 the calculated structure factor using coor-
dinate vectors r,+A4r,. If r, are the correct coor-
dinate vectors of a centrosymmetric structure with
space group P, containing N atoms per cell, the cal-
culated structure factor for the correct structure is

N2

% =223 f,cos 2nH.T, . (1)

n=1

Here r, is the coordinate vector for the nth atom
measured in A, and H is the reciprocal-lattice vector,
measured in A-1, The length |H| of the vector H,
i.e. its absolute value, will be denoted by H. Thus
H = (25sin §)/A. We shall be assuming that the dif-
fraction theory of X-rays holds exactly. Then, in the
absence of experimental errors (such as errors in
measurement of intensities), F° = F°. If errors are
present, then F° = F° even for correct r,. Complete
error treatment should take this into account. In this
paper we shall assume that the effect of incorrect
coordinates on the residuals is much greater than the
effect of errors in measurement of F°, which effec-
tively amounts to the assumption of F° = F° for
correct r,. We shall make this assumption with the
understanding that our treatment applies only to the
early stages of refinement, which is just the stage
where the improvement of convergence is of the
greatest value. When coordinates are in error by vec-
tors Ar,, the structure factor is calculated as

Nj2
F4 = 23, cos 2nH. (r,+A4r,) . 2)
n=1

The difference between (1) and (2) we denote by AF,.
The distribution law for AF = F°—F4 = F°—F4
for both centric and non-centric crystals has been
given by Luzzati (1952).
For the centric case, the distribution law is found by
Luzzati to be

pdF)=C exp{—

2p(1—D)2+25
Here p(AF)d(AF) is the probability that AF is to be
found between values AF and AF+d(AF). The

normalizing constant C will not concern us. In equa-
tion (3),

—(D-1)Fp
[4F—(D-1) ]}_ )
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D(H) = cos 2a(H.Ar,) . 4)

The bar signifies an average over all possible values of
Ar; ¢ is given by

v =32 = N )
n=1
and
N
d = [D(2H)—-D?) X f2 cos 2n(2H.r,) (6)
n=1

can be neglected if N is sufficiently large.
When refining a structure by the Fourier method,
the series

o(r) = 3 |Fy|8(F?) cos 2nH.r , )
H

is usually computed, where |F%| are the observed
structure-factor amplitudes, and these are given the
signs of the calculated factors, as denoted by S(F4).
It is logical to weight the Fourier terms according to
the probability p, that the assumption S(F%)=S(F4)
is fulfilled. If this probability is 3, it is reasonable to
omit the term altogether (i.e., assign weight = 0). If
p, = 1, the weight should be 1. In the limit, when
all the signs are known with certainty, the usual series
should be obtained. This weighting is given if we write

o(r) = 3 Wy|F%|S(F4%) cos 2nH. 1, (8)
H
where
IVH = 2pH+_1 . (9)

Utilizing Luzzati’s formula for p,, we obtain

[|[F°|S(F4)—F4— (D-1)F4}
B 2¢(1—-D?)

p+=0exp{ }, (10)

and for the probability p_ that S(F°) = —S(F9)
holds we obtain

—|F°|S(F3)—F4— (D—1)F4}2
p. = Coxp|- LI (29)0(1_1)2)( BT )

In these equations, F4 is the (known) calculated
structure factor using initial coordinates.

The problem must be now renormalized by taking
p,+p_ = 1. This gives for the weight W

W = {1—(p_[p)}{1+(p_[p.)}, (12)
where
p_|p, = exp {-2D|F°F4|[p(1-D¥}.  (13)
Thus
_ |Fo. 4|
W = tanh {(P———(UD_D)} , (14)

which is a general formula valid for any value of

D = cos 2nH.Ar,.

The next step is the evaluation of D. This depends
on the law of distribution of errors Ar. According to
Luzzati, if this law is given by a probability distribu-
tion p(4r), where p(Ar)dv is the probability that the
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vector Ar lies in a volume element dv, then D is given
by its Fourier transform

D= S p(Ar) cos 2x(H. Ar)dv , (15)
which is the definition of an average value required
to evaluate D.

For structures composed of atoms all having nearly
the same atomic weight, it is reasonable to assume
that p(Ar) follows a Gaussian error law with dis-
persion ¢, which is the measure of the accuracy of the
structure.

The dispersion ¢ is connected with the average
radial error |Ar| by formulae given by Luzzati:

Ar], = Y@[r)o = 019790, (16a)
|dr], = Y(n/2)o = 1-25330 , (165)
14r]; = 2/ 2/n)o = 1-59580 , (16¢)

where the subscripts refer to one-, two- and three-
dimensional problems. Then

p(4r) = K exp {—|4r|2[2¢%} , 1Y)
which, after integration, gives
D = exp (—2n2H%?), (18)

where H = (2 sin 0)/4. (There is a slight misprint in
Luzzati’s formula (48).) Substituting in our formula
(12) for W, we obtain, finally,

(19)

0 Ipa
W=tanh{ [F°F| }

2Nf2 sinh (272H202)

The formula can be slightly simplified by introduc-
ing the normalized structure factor

E = F|Jp = F|YZf; = F|yNf?,
which has the property E2 = 1. We can also write

(20)

2n2H20% = u? . (21)
Then

W = tanh {|E°E“|/2 sinh »?%} , (22)
which is the final formula for proper weighting the
Fourier series (8), valid in the case when the discrep-

ancy is due solely or predominantly to incorrect
atomic position. Note that this weight depends not
only on H, but also on the degree of refinement of
the structure, which is expressed in the magnitude of a.
In addition, the weight depends both on the magnitude
of E° and of E4 in a symmetrical manner; the struc-
ture factors with both E° and of E4 large have greater
weight. The function is shown in Fig. 1.

The following cases can be distinguished:

The value of 4?2 = 272H?202 is small, i.e. either H is
small (low-order reflections only are used) or o is
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Fig. 1. Graph of weighting function W plotted against
|E°E4| and Hg.

small (the structure has been sufficiently refined).
Then sinh  can be developed in a series

. x3
smhx=x+~3—!+...

and higher terms can be neglected. We obtain then

W = tanh {|E°E“|[2u?} . (23)
If now 2 is very small compared to |E°E4|, the frac-
tion will tend to infinity and the weight W will tend
to unity. The Fourier series will then tend to the
conventional non-weighted form.

If the fraction |E°E4|/2u® remains small, however,
we can develop the hyperbolic tangent into a series

tanhx=x—%3+...;

and, neglecting higher terms, we have

W = |E°E4|[2u? . (24)
Neglecting variation with E, we have W2~ H-2 or
W2~ d*, which is in fair agreement with the results
of previous investigations on weighting. However,
such expressions cannot replace adequately the full
formula over the whole range of variables, and fails
especially when F is large.

If simplification of computation is required, there
is still another way of replacing the full formula by a
simpler one. It is possible, instead of using incon-
venient expansions into powers, to divide the function
into two regions separated by a boundary drawn at
W = 0-5, and to approximate all values of W < 0-5
by W =0 and all values of W =05 by W = 1-0.
This may be justified because W resembles a step
function rather closely. The weighting thus reduces to
a simple sorting out or rejection of certain Fourier
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coefficients from the usual form of a Fourier series,
without any multiplication by W.

Since tanh—! (}) = 0-55, we obtain an equation for

the boundary

|E°E4| = 1-10 sinh u2 . (25)
We can thus formulate the following rule: If
|E°E4] > 1-10 sinh 4?2, we shall take W =1, i.e.,
include the term in the Fourier series; if
|[E°E4} < 1-10 sinh 2, we shall take W =0, ie.,
exclude the term from the Fourier series. This is a
comparatively simple rule to use. A still simpler but
less accurate rule can be obtained by substituting the
average value E°E4 = 1. Then the boundary occurs
at 1-10 sinh 42 = 1, which leads to Ho = 0-203. The
crudest rule amounts thus to rejection of all reflexions
with Ho > 0-203 from the Fourier series. As an
example, if we suspect that the accuracy from struec-
ture leads to ¢ = 0-5 A, we should reject all structure
factors which have H > 0-406 A-1. For 1 = 1-54 &,
this indicates that we should retain only the low-
order terms below sin § = 0-31.

If we ask which ¢ corresponds to sin 0 = 1, we
obtain for Cu Kx radiation H = 1-3 A-! and ¢ =
0-156 A. We obtain thus the following rule of thumb:
If the atomic positions are known with an accuracy
better than 0-156 A, all the reflexions within the range
of Cu K« radiation can be included in the Fourier
series without any serious loss of efficiency of con-
vergence due to lack of proper weighting. If the atomic
positions are known with less accuracy, then some
form of weighting, either by rejection of higher-order
reflexions using (25) or (24) or by use of the full
formula (19), would improve the efficiency of con-
vergence.

Determination of error in coordinates

In order to apply the weighting function discussed in
the first part of the paper, it is necessary to estimate
by some method the averages D, or, in case of coor-
dinate errors conforming to Gaussian distribution, the
dispersion . This can be done by the method of Luz-
zati (1952), or by the method of Cruickshank (1949).
These two methods, however, do not give the same
result. For highly refined structures in three dimen-
sions, Luzzati’s method greatly overestimates the
error in coordinates. This is due to the assumption
that all the discrepancy between the observed and
calculated structure factors is caused solely by the
error in coordinates. This assumption holds fairly
well at the initial stages of refinement, when the errors
in coordinates are the predominating cause of dis-
crepancies; but it fails completely at the last stages
of refinement, when the errors in atomic positions are
very small and the discrepancies are predominantly
due to errors of measurement of intensities. Cruick-
shank’s method is then applicable, giving the correct
result.
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In order properly to apply Luzzati’s method to
final stages of refinement, one should subtract the
square of residual due to errors in intensities from the
square of the total residuals. It is obvious that where
the residuals due to errors in intensities are larger than
those due to incorrect atomic positions, it will be
practically impossible to obtain the latter with any
degree of accuracy.

Another point of importance to be watched is that
for a structure composed of atoms of unequal atomic
weight, the positions of the heavy atoms are usually
known with greater accuracy than those of the light
atoms. In this case, the distribution D may depart
from a Gaussian law of errors considerably. Cruick-
shank’s method gives the errors in coordinates of
individual atoms even if they differ in atomic weight.
On the other hand, Cruickshank’s method is valid
only for small errors in atomic coordinates; thus when
errors in coordinates are large, Luzzati’s method is to
be preferred. The two methods are thus to a certain
degree complementary.

Modification of Luzzati’'s method

Luzzati’s method in its original form has the dis-
advantage of requiring comparison of points on a
graph against certain curves. However, it is a com-
paratively simple matter to rewrite the equations into
a more convenient form. '
For centrosymmetrical structures, Luzzati uses the
equation
R =y{21-D)}+y{2(1+D)}-2,

where R = ||F°|— [F"]|+|T"], the averages being taken
over small ranges of sin §. This equation can be re-
written into a form

D = y{1-R:(}R+1)3}, (27)

which allows direct evaluation of D as a function of
sin 6. The values so obtained, after graphical smooth-
ing out, may be immediately used in our formula (13)
for W.

However, if D obeys the Gaussian law, then, for
the three-dimensional case,

D = exp (—2n2H?2g%) ,

(26)

(28)

and one can substitute into (25). After taking a
logarithm, one obtains

2znHo = Q(R),

Q(B) = y{-log, [1-R*(}R+1)]} .

In this form, o can be readily evaluated from R
computed over intervals of sin . The form of the
equation suggests plotting Q(R) against H or sin 6;
ii the Gaussian error law is obeyed, a straight line
should be obtained, which would yield 2zo from its
slope.

In order to facilitate the computation, the values

(29)
(30)

where
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of @(R) are calculated in Table 1 and also plotted in
Fig. 2.

Table 1. Centrosymmetric crystal: Q(R) as a Junction

of R
R Q(R) R Q(R)
0 0 0-45 0-537

0-05 0-050 0-50 0-617
0-10 0-102 0-55 0-705
0-15 0-156 0-60 0-804
0-20 0-212 0-65 0-920
0-25 0-271 0-70 1-062
0-30 0-331 0-75 1.255
0-35 0-396 0-80 1-596
0-40 0-464 0-828 oo
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Fig. 2. Graph of function Q(R) = V{—loge [1—-R2(}R41)%]}
against R.

Note that for small values of R, the function

Q(R) ~R.

Procedure for structures with large errors
in coordinates

If the errors in coordinates of a structure are large
(say greater than about } A), difficulties may be
encountered in applying the Luzzati method owing to
the paucity of significant data at low 6 angles. In
other words, the function R assumes its limiting value
E, = 0-828 so soon that the whole plot of R versus
sin 6, except for a very narrow part at low sin 6, is
insensitive to the error in coordinates. In this case, the
calculation of R over intervals of sin § may require
such small intervals that the calculation may become
meaningless. It is then best to revert to individual
values of [AF| and simply to plot |AF| against sin 6.
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In such a graph, B, corresponds to a horizontal
line plotted at |AF| = 0-828 |F|, where |F| = 0-7979F2.
It is easy to see at which sin § value the average of
|AF| approaches the B, value, and also whether the
scaling is reasonable. The next step is to draw a ‘best’
line through the significant low-order points, and then
to find the ‘half-way point’, i.e., the value of sin §,
at which |AF| = }|AF|,. At this point, Q(3R,) =
0-485 = 2xHg, so that we obtain the desired ¢ from
the relation

0485  0-485]

= = —, 1
7= %l " dasn 0 @1

It should be realized that in the extreme case when
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sin 0, falls below the lowest sin § of the reflexion,
only a lower limit of ¢ may be obtained.
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Interatomic Distances and Thermal Anisotropy in Sodium Nitrate and Calcite

By RonaLp L. Sass, RoSEMARY VIDALE AND JERRY DONOHUE

Department of Chemistry, University of Southern California, Los Angeles, California, U.S.A.

(Recetved 25 March 1957)

A re-determination of the parameters in calcite and sodium nitrate made by the use of all (Cu K«)
reflections due to oxygen scattering only, gives C-O = 1-294 A and N-O = 1-218 A, with esti-
mated standard deviations of 0-004 A in both. The parameter refinements were carried out by
least squares, and by a Fourier method which isolated the oxygen atoms from the other atoms.
Electron-density plots indicate considerable anisotropy in the motion of the anions, the oxygen
atoms appearing distinctly reniform. The bond distances are compared with those in related com-
pounds, and those predicted by simple valence-bond theory.

Introduction

The structure of calcite was one of the first to be deter-
mined by X-rays (Bragg, 1914). It is the type struc-
ture for a number of nitrates, carbonates, and borates,
and is well suited for the determination of accurate
interatomic distances because there is but one posi-
tional parameter. Approximate values of the para-
meter in calcite and sodium nitrate were obtained by
Wyckoff (1920a, b); the first precise determinations
of these quantities were those of Elliott (1937). In
his work, Elliott made use of Laue data exclusively;
seven pairs of reflections were used to determine the
parameter in calcite, and three pairs in sodium nitrate.
Although the intensities of these reflections were
estimated very carefully by the use of an x-ray inte-
grating photometer, it appeared desirable to re-
determine the parameters with more extensive data,
and to investigate the thermal anisotropy, because,
as has been discovered recently in the case of benzene
(Cox, Cruickshank & Smith, 1955), neglect of aniso-
tropy of the sort which might be expected for the
anions in these two crystals may have a significant
effect on the values obtained for the interatomic

distances. The parameter in sodium nitrate has also
been determined by Tahvonen (1947), who used the
trial-and-error method on powder data only.

Experimental

Approximately cylindrical crystals suitable for X-ray
examination were obtained by cleavage of larger
crystals. The sodium nitrate crystal was about 0-2 mm.
in diameter x5 mm., while that of calcite was about
0-08 mm. in diameter x3 mm. Both crystals were
dipped in liquid air to minimize extinction. The
crystals were mounted with the axis of rotation along
the long dimension, which was parallel to one of the
edges of the cleavage rhombohedron. Multiple-film
Weissenberg photographs were then taken with Cu K«
radiation of the first four odd layer lines of the non-
primitive (cleavage) rhombohedral unit cell. All the
reflections on these layer lines are due only to scat-
tering by the oxygen atoms. The intensities were
estimated in the usual way with the aid of an intensity
strip. Absorption was neglected. Because of the rota-
tion axis chosen for Weissenberg photography,
equivalent reflections were sometimes recorded on



