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Weighting of Fourier Series for Improvement of Efficiency of Convergence 
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The efficiency of convergence of Fourier series used in crystal-structure determinations depends 
upon the weighting of the structure factors used. The weighting is of particular importance in 
early stages of refinement of a structure. A proper formula for weighting has been derived from 
Luzzati 's statistical treatment of errors. The weight depends not only on the reciprocal spacing of 
the reflection, but  also on the degree of refinement of the structure, and on the magnitudes of both 
the calculated and the observed structure factors. Determination of the degree of error in structure 
coordinates is discussed, and Luzzati 's and Cruickshank's methods are compared. A modification 
of Luzzati 's method is proposed when the error in coordinates is large. 

Introduct ion 

The efficiency of convergence of different methods  of 
s tructure determinat ion was first s tudied by  Qurashi 
& Vand (1953) and  b y  Qurashi 0953,  1955). The 
results of these studies indicate tha t  the convergence 
great ly  depends on the weighting funct ion adopted;  
i.e., the  structure factors F(hkl)  should be mul t ip l ied  
by  a weight W, which m a y  be a funct ion of several 
variables, the most impor tan t  of which is the depen- 
dence on d* = l i d  = (2 sin 0)/)~ and  on the magni tude  
of IF[. In  the previous work the dependence on IF] 

was neglected; and  the form W2] ~ = d ~, with ~ = 
n + 2 ,  seemed the most  suitable weighting funct ion for 
the least-squares ref inement  of an n-dimensional  sum- 

mat ion  (n = 1, 2 or 3), where ] i s  the average atomic 
scattering factor. However, the form of the weighting 
funct ion and the value of ~ were not  unequivocal ly  
determined by the  above methods of analysis.  

The problem can be approached much more logically 
from the point  of view of probabi l i ty  theory, and for- 
mulae  can be derived which are superior to the above 
weighting. In. fact, the  whole approach to ref inement  
of a s tructure at  the init ial  stages by  least-squares or 
by  Fourier  techniques,  when the  correct s tructure is 
far  from the assumed structure, can be placed on a 
ra t ional  basis. 

Weight ing  of s tructure  factors  in a Fourier  
ser ies  for space group P1 

Let F ° be the observed structure factor, F c the cal- 
culated structure factor using coordinate vectors r , ,  
and  F a the  calculated structure factor using coor- 
dinate  vectors r~+Arn.  If  r~ are the correct coor- 
dinate  vectors of a centrosymmetr ic  structure with 
space group P i ,  containing N atoms per cell, the cal- 
culated structure factor for the correct s tructure is 

~'~ = 2 ~ f ,  cos 2 ~ H . r , .  (1) 

Here r,, is the coordinate vector for the n th  atom 
measured in /~ ,  and H is the reciprocal-lattice vector, 
measured in /~-x. The length I H I of the vector H, 
i.e. its absolute value, will be denoted by H. Thus 
H = (2 sin 0)/2. We shall  be assuming tha t  the dif- 
fraction theory of X-rays  holds exactly. Then, in the 
absence of exper imenta l  errors (such as errors in 
measurement  of intensities),  F ° =  .F ~. If errors are 
present,  then  F ° #  F ~ even for correct rn. Complete 
error t r ea tment  should take this into account. In  this 
paper  we shall  assume tha t  the effect of incorrect 
coordinates on the residuals is much  greater than  the 
effect of errors in measurement  of F °, which effec- 
t ive ly  amounts  to the assumption of .F°= F ~ for 
correct rn. We shall  make  this assumpt ion with the 
unders tanding tha t  our t r ea tmen t  applies only to the  
early stages of refinement,  which is just  the stage 
where the improvement  of convergence is of the 
greatest value. When  coordinates are in error by  vec- 
tors Ar~, the structure factor is calculated as 

~v/2 
Fzzx = 2 Z f ~  cos 2~H.  ( rn+Ar~) .  (2) 

n = l  

The difference between (1) and (2) we denote by  AFH. 
The dis t r ibut ion law for A F  = F ~ - F  ~ = F ° - F  ~ 

for both centric and non-centric crystals has been 
given by  Luzzat i  (1952). 

For the centric case, the dis t r ibut ion law is found by  
Luzzat i  to be 

[ A F - ( D - 1 ) F ~ ' ] 2 ~  . 
T ( A F )  -- C exp ~ -  ~-~-D-~2-+-- ~ j (3) 

Here p ( A F ) d ( / i F )  is the probabi l i ty  t h a t / I F  is to be 
found between values / i F  and AF+d{LJF) .  The 
normalizing constant  C will not concern us. In  equa- 
t ion (3), 
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D(H) = cos 2~r(H.Ar~) . (4) 

The bar  signifies an average over all possible values of 
A r ;  ~v is given by 

N 

= 2:  f~ = Nf~; (5) 
n = l  

and 
N 

= [ D ( 2 H ) - D  2] ~ f ~  cos 2~(2H.rn)  (6) 
n = l  

can be neglected if N is sufficiently large. 
When  refining a structure by the Fourier method,  

the series 
! ~(r) = 2 :  [F~[ S(F ~) cos 2 ~ H .  r ,  (7) 

H 

is usual ly  computed, where [F~[ are the observed 
structure-factor ampli tudes,  and these are given the 
signs of the calculated factors, as denoted by  S(FZ). 
I t  is logical to weight the  Fourier  terms according to 
the probabi l i ty  p+ tha t  the assumption S(F°)=S(F J) 
is fulfilled. If  this probabi l i ty  is ½, it is reasonable to 
omit  the term altogether (i.e., assign weight = 0). If  
p+ = 1, the weight should be 1. In  the limit,  when 
all the signs are known with certainty,  the usual series 
should be obtained. This weighting is given if we write 

0(r) = 2:  W~IF°HIS(F~) cos 2 ~ H . r ,  (8) 
n 

where 
WH = 2pH+--I • (9) 

Util izing Luzzati 's  formula for p+, we obtain 

{ [,F°,S(F~)-F~-(D-1)FZ] ~} 
p+ = C exp - 2 ~ ( l _ D ~  ) , (10) 

and for the probabi l i ty  p_ tha t  S(F °) = - S ( F  ~) 
holds we obtain 

/ [-  IF°I S (F J) - F z - ( n  - 1 )FA]2 ~. 
C (11) v -  = exp  / J 

In  these equations, F z is the (known) calculated 
structure factor using init ial  coordinates. 

The problem must  be now renormalized by taking 
p + + p _  = 1. This gives for the weight W 

W = {1-(p_/p+)}/{l+(p_/p+)}, (12) 
where 

p_/p+ = e x p  (13) 
Thus 

~- IF°'F~! ~ (14) 
W = tanh  Icf(1/n-D)J ' 

which is a general formula valid for any  value of 

D = cos 2 ~ H . / I r , .  
The next  step is the evaluat ion of D. This depends 

on the law of distr ibution of errors A r. According to 
Luzzati ,  if this law is given by a probabi l i ty  distribu- 
t ion p(Ar),  where p(Ar)dv is the probabi l i ty  tha t  the 

vector A r lies in a volume element dv, then  D is given 
by  its Fourier  t ransform 

D = I p(Ar)  cos 2~(H.Ar)dv, (15) 

which is the definit ion of an average value required 
to evaluate  D. 

For structures composed of atoms all having  near ly  
the same atomic weight, i t  is reasonable to assume 
tha t  p(Ar)  follows a Gaussian error law with dis- 
persion a, which is the measure of the accuracy of the 
structure. 

The dispersion a is connected with the  average 

radial  error IAr] by  formulae given by  Luzzati" 

I/Ir]l = ~/(2/~r)~ = 0.7979~, (16a) 

[/Ir12 = V(~/2)~ = 1.2533a, (16b) 

IAr[a = 2V(2/~)a = 1.5958~, (16c) 

where the subscripts refer to one-, two- and three- 
dimensional  problems. Then 

p(Ar)  = K exp {-IAr[2/2a2}, (17) 

which, after integration, gives 

D = exp (-2~rgHgag) , (18) 

where H = (2 sin 0)/L (There is a slight mispr in t  in 
Luzzati 's  formula (48).) Subst i tut ing in our formula  
(12) for W, we obtain, finally, 

IF°FZ[ ~ (19) W tanh  
( 2 N ~  sinh (2~r2H~a2)) " 

The formula can be sl ightly simplified by  introduc- 
ing the normalized structure factor 

E = F/l/q~ = F/VXf 2 = F/I/Nf2, (20) 

which has the property E 9 = 1. We can also write 

2geH~cr 2 = u 2 . (21) 
Then 

W = t anh  {IE°EZ[/2 sinh u~}, (22) 

which is the f inal  formula for proper weighting the 
Fourier series (8), val id in the case when the discrep- 

ancy is due solely or p r e d o m i n a n t l y  to incorrect 
atomic position. Note tha t  this weight depends not  
only on H, but  also on the degree of ref inement  of 
the structure, which is expressed in the magni tude  of a. 
In  addition, the weight depends both on the magni tude  
of E ° and of E z in a symmetr ica l  manner ;  the struc- 
ture factors with both E ° and of E z large have greater 
weight. The funct ion is shown in Fig. 1. 

The following cases can be distinguished" 
The value of u 2 = 2~2H2a2 is small, i.e. either H is 

small  (low-order reflections only are used) or a is 
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Fig. 1. Graph  of weight ing funct ion  W p lo t t ed  agains t  
IEOE'~ I and H(~. 

small  (the structure has been sufficiently refined). 
Then sinh x can be developed in a series 

x 3 
s i n h x  = x + ~ + . . .  

and higher terms can be neglected. We obtain then  

W -- t anh  .~]E°E'~l/2u2 ) . (23) 

If now u 2 is very small  compared to IE°E'~[, the frac- 
t ion will tend  to inf ini ty  and the weight W will tend 
to uni ty .  The Fourier  series will then  tend to the 
conventional  non-weighted form. 

If the fraction ]E°E'~]/2u 9 remains small, however, 
we can develop the hyperbolic tangent  into a series 

x3 
t a n h x  = x - - ~ + . . .  ; 

and, neglecting higher terms, we have 

W = ]E°E'~I/2u ~ . (24) 

:Neglecting var ia t ion with E, we have W2--~ H -~ or 
W ~ _ d  4, which is in fair  agreement  with the results 
of previous investigations on weighting. However, 
such expressions cannot replace adequate ly  the full  
formula over the whole range of variables, and  fails 
especially when E is large. 

If simplif ication of computat ion is required, there 
is still another  way of replacing the full  formula by  a 
simpler one. I t  is possible, instead of using incon- 
venient  expansions into powers, to divide the function 
into two regions separated by  a boundary  drawn at  
W = 0"5, and to approximate  all values of W < 0.5 
by  W = 0  and all values of W>-_0"5 by W =  1.0. 
This m a y  be justif ied because W resembles a step 
funct ion rather  closely. The weighting thus reduces to 
a simple sorting out or rejection of certain Fourier  

coefficients from the  usual  form of a Fourier  series, 
wi thout  any  mult ipl icat ion by  W. 

Since t anh  -z (½) = 0.55, we obtain a n  equat ion for 
the boundary  

]E°E'~[ = 1-10 sinh u 2 . (25) 

We can thus  formulate  the following rule: If  
]E°E '~] > 1 . 1 0 s i n h u  2, we shall  take W =  1, i.e., 
include the te rm in the Fourier  series; if 

[E°E'~ I ~_ 1 - 1 0 s i n h u  2, we shall  take W = 0, i.e., 
exclude the te rm from the Fourier  series. This is a 
comparat ively  simple rule to use. A still s impler  bu t  
less accurate rule can be obtained by  subst i tu t ing the  
average value E ° E  "~ -- 1. Then the boundary  occurs 
at  1.10 sinh u 2 = 1, which leads to H a  = 0.203. The 
crudest rule amounts  thus to rejection of all reflexions 
with H a  > 0-203 from the  Fourier  series. As an 
example,  if we suspect tha t  the accuracy from struc- 
ture leads to ~ = 0-5 ~,  we should reject all s tructure 
factors which have  H > 0-406/~-1. For  2 = 1.54 J~, 
this  indicates t ha t  we should retain only the  low- 
order terms below sin 0 - - 0 . 3 1 .  

If  we ask which a corresponds to sin 0 = 1, we 
obta in  for Cu K ~  radiat ion H = 1.3 /~-z and a = 
0.156/~. We obtain thus  the following rule of t h u m b :  
If the  atomic positions are known with an accuracy 
bet ter  t han  0.156/~, all the  reflexions wi thin  the range 
of Cu K a  radiat ion can be included in the Fourier  
series without  any  serious loss of efficiency of con- 
vergence due to lack of proper weighting. If  the atomic 
positions are known with less accuracy, then  some 
form of weighting, either by  rejection of higher-order 
reflexions using (25) or (24) or by use of the full  
formula  (19), would improve the efficiency of con- 
vergence. 

D e t e r m i n a t i o n  of e r r o r  in c o o r d i n a t e s  

I n  order to apply  the  weighting funct ion discussed in 
the  first par t  of the  paper, it  is necessary to es t imate  
by  some method the averages D, or, in case of coor- 
dinate errors conforming to Gaussian distribution, the 
dispersion a. This can be done by  the method  of Luz- 
zati  (1952), or by  the  method of Cruickshank (1949). 
These two methods,  however, do not  give the same 
result. For  highly  refined structures in three dimen- 
sions, Luzzat i ' s  method great ly overest imates the 
error in coordinates. This is due to the assumption 
tha t  all the  discrepancy between the observed and 
calculated structure factors is caused solely by  the 
error in coordinates. This assumption holds fa i r ly  
well at  the ini t ial  stages of refinement,  when the errors 
in coordinates are the predominat ing cause of dis- 
crepancies; hu t  i t  fails completely at the last stages 
of refinement,  when the errors in atomic positions are 
very small  and the discrepancies are p redominan t ly  
due to errors of measurement  of intensities. Cruick- 
shank 's  method is then applicable, giving the correct 
result. 
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In  order properly to apply Luzzati 's method to 
final stages of refinement, one should subtract  the 
square of residual due to errors in intensities from the 
square of the total  residuals. I t  is obvious t h a t  where 
the residuals due to errors in intensities are larger than 
those due to incorrect atomic positions, it will be 
practically impossible to obtain the latter with any 
degree of accuracy. 

Another point of importance to be watched is tha t  
for a structure composed of atoms of unequal atomic 
weight, the positions of the heavy atoms are usually 
known with greater accuracy than those of the light 
atoms. In this case, the distribution D may depart  
from a Gaussian law of errors considerably. Cruick- 
shank's method gives the errors in coordinates of 
individual atoms even if they differ in atomic weight. 
On the other hand, Cruickshank's method is valid 
only for small errors in atomic coordinates; thus when 
errors in coordinates are large, Luzzati 's method is to 
be preferred. The two methods are thus to a certain 
degree complementary. 

Modification of Luzzati's  method  

Luzzati 's method in its original form has the dis- 
advantage of requiring comparison of points on a 
graph against certain curves. However, it is a com- 
paratively simple mat ter  to rewrite the equations into 
a more convenient form. 

For centrosymmetrical structures, Luzzati uses the 
equation 

R = V{2(1-D))+~/{2(1 + D ) ) - 2 ,  (26) 

where R = ][F°[ - [ Fz I/--IF°l, the averages being taken 
over small ranges of sin 0. This equation can be re- 
written into a form 

D = ]/{1-R~(¼R+ 1)9), (27) 

which allows direct evaluation of D as a function of 
sin 0. The values so obtained, after graphical smooth- 
Lag out, may  be immediately used in our formula (13) 
for W. 

However, if D obeys the Gaussian law, then, for 
the three-dimensional case, 

D = exp (-2ze~'H2ag) , (28) 

and one can substitute into (25). After taking a 
logarithm, one obtains 

2~t ta  = Q(R) , (29) 
where 

Q(R) = V{-loge [1 -R2(~R+ 1)2]}. (30) 

In  this form, a can be readily evaluated from R 
computed over intervals of sin 0. The form of the 
equation suggests plotting Q(R) against H or sin 0; 
if the Gaussian error law is obeyed, a straight line 
should be obtained, which would yield 2~ra from its 
slope. 

In  order to facilitate the computation, the values 
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of Q(R) are calculated in Table 1 and also plotted in 
Fig. 2. 

Table 1. Centrosymmetric crystal: Q(R) as a function 
of R 

R Q(R) R Q(R) 
0 0 0.45 0.537 

0.05 0.050 0-50 0-617 
0.10 0.102 0.55 0.705 
0.15 0.156 0.60 0.804 
0.20 0.212 0.65 0.920 
0.25 0.271 0-70 1.062 
0.30 0.331 0.75 1.255 
0.35 0.396 0.80 1.596 
0.40 0.464 0-828 c~ 

1.2 

1.0 

0.~ 

f 
-~ 0"( a 

0"4 

0"2 

O0 0:2 0:4 0"6 028 R--" 

Fig. 2. Graph of function Q(R) = I/{--loge [1--R2(¼R+I)2]} 
against R. 

Note tha t  for small values of R, the function 
Q(R).-~R. 

Procedure  for s tructures  with  large  errors  
in coordinates  

If the errors in coordinates of a structure are large 
(say greater than about ½ A), difficulties may  be 
encountered in applying the Luzzati method owing to 
the paucity of significant data  at  low 0 angles. In 
other words, the function R assumes its limiting value 
R~  = 0.828 so soon tha t  the whole plot of R versus 
sin O, except for a very narrow par t  at  low sin O, is 
insensitive to the error in coordinates. In this case, the 
calculation of R over intervals of sin 0 may require 
such small intervals tha t  the calculation may become 
meaningless. I t  is then best to revert to individual 
values of IAFI and simply to plot IAFI against sin 0. 
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In  such a graph, R ~  corresponds to a horizontal  

l ine plot ted at  IAFI = 0.828 IFI, where IF[ = 0-7979F 9. 
I t  is easy to see at  which sin 0 value the average of 
[AF l approaches the  Roe value, and also whether  the 
scaling is reasonable. The next  step is to draw a 'best '  
l ine through the significant low-order points, and then  
to f ind the 'half-way point ' ,  i.e., the value of sin 0h 

at  which ]AFI = ½]AFI~. At  this point,  Q(½R~)= 
0.485 = 2:rHa, so tha t  we obtain the desired (r from 
the relation 

0-485 0.485~ 
a 2:~H 4z~ sin 0h " (31) 

I t  should be realized tha t  in the extreme case when 

sin 0h falls below the lowest sin 0 of the reflexion, 
only a lower l imi t  of a m a y  be obtained. 
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Interatomic  Distances  and Thermal  Anisotropy  in S o d i u m  Nitrate  and C a l c i t e  

BX r RONALD L. S~ss, ROSEMAI~Y VIDALE A_ND JEI~I~Y DONOHUE 

Department of Chemistry, University of Southern California, Los Angeles, California, U.S.A. 

(Received 25 March 1957) 

A re-determination of the parameters in calcite and sodium nitrate made by the use of all (Cu Ks)  
reflections due to oxygen scattering only, gives C-O ---- 1-294 A and N-O ---- 1.218 A, with esti- 
mated standard deviations of 0.004 A in both. The parameter refinements were carried out by 
least squares, and by a Fourier method which isolated the oxygen atoms from the other atoms. 
:Electron-density plots indicate considerable anisotropy in the motion of the anions, the oxygen 
atoms appearing distinctly reniform. The bond distances are compared with those in related com- 
pounds, and those predicted by simple valence-bond theory. 

Introduction 

The structure of calcite was one of the first to be deter- 
mined by X-rays  (Bragg, 1914). I t  is the type struc- 
ture for a number  of nitrates,  carbonates, and borates, 
and is well suited for the determinat ion of accurate 
interatomic distances because there is but  one posi- 
t ional parameter .  Approximate  values of the para- 
meter  in calcite and  sodium ni t ra te  were obtained by 
Wyckoff  (1920a, b); the first precise determinat ions 
of these quanti t ies  were those of Elliott  (1937). In  
his work, Ell iott  made  use of Laue data  exclusively;  
seven pairs of reflections were used to determine the 
parameter  in calcite, and three pairs in sodium nitrate.  
Although the intensit ies of these reflections were 
est imated very carefully by  the use of an a - ray  inte- 
grating photometer ,  it  appeared desirable to re- 
determine the parameters  with more extensive data, 
and to investigate the thermal  anisotropy, because, 
as has been discovered recently in the case of benzene 
(Cox, Cruickshank & Smith,  1955), neglect of aniso- 
t ropy of the sort which might  be expected for the 
anions in these two crystals m a y  have a significant 
effect on the values obtained for the interatomic 

distances. The parameter  in sodium ni t ra te  has also 
been determined by Tahvonen (1947), who used the 
tr ial-and-error method on powder da ta  only. 

Experimental  

Approximate ly  cylindrical  crystals suitable for X-ray  
examinat ion  were obtained by cleavage of larger 
crystals. The sodium ni t ra te  crystal  was about  0-2 ram. 
in diameter  × 5 mm.,  while tha t  of calcite was about  
0.08 mm. in diameter  ×3 ram. Both crystals were 
dipped in l iquid air to minimize extinction. The 
crystals were mounted  with the axis of rotat ion along 
the long dimension, which was parallel  to one of the 
edges of the cleavage rhombohedron.  Multiple-film 
Weissenberg photographs were then  taken  with Cu Kc~ 
radiat ion of the first four odd layer  lines of the non- 
pr imit ive  (cleavage) rhombohedral  uni t  cell. All the 
reflections on these layer  lines are due only to scat- 
tering by  the oxygen atoms. The intensit ies were 
est imated in the usual  way with the aid of an in tens i ty  
strip. Absorption was neglected. Because of the rota- 
tion axis chosen for Weissenberg photography,  
equivalent  reflections were sometimes recorded on 


